Package: IPWboxplot 0.1.2

IPWboxplot: Adapted Boxplot to Missing Observations

Boxplots adapted to the happenstance of missing observations where drop-out probabilities can be given by the practitioner or modelled using auxiliary covariates. The paper of "Zhang, Z., Chen, Z., Troendle, J. F. and Zhang, J.(2012) <doi:10.1111/j.1541-0420.2011.01712.x>", proposes estimators of marginal quantiles based on the Inverse Probability Weighting method.

Authors:Ana Maria Bianco [aut], Graciela Boente [aut], Ana Perez-Gonzalez [aut]

IPWboxplot_0.1.2.tar.gz
IPWboxplot_0.1.2.zip(r-4.5)IPWboxplot_0.1.2.zip(r-4.4)IPWboxplot_0.1.2.zip(r-4.3)
IPWboxplot_0.1.2.tgz(r-4.4-any)IPWboxplot_0.1.2.tgz(r-4.3-any)
IPWboxplot_0.1.2.tar.gz(r-4.5-noble)IPWboxplot_0.1.2.tar.gz(r-4.4-noble)
IPWboxplot_0.1.2.tgz(r-4.4-emscripten)IPWboxplot_0.1.2.tgz(r-4.3-emscripten)
IPWboxplot.pdf |IPWboxplot.html
IPWboxplot/json (API)

# Install 'IPWboxplot' in R:
install.packages('IPWboxplot', repos = c('https://anaperezgonzalez.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 7 scripts 693 downloads 3 exports 2 dependencies

Last updated 1 years agofrom:cd92b532d7. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winOKNov 11 2024
R-4.5-linuxOKNov 11 2024
R-4.4-winOKNov 11 2024
R-4.4-macOKNov 11 2024
R-4.3-winOKNov 11 2024
R-4.3-macOKNov 11 2024

Exports:IPW.ASYM.boxplotIPW.boxplotIPW.quantile

Dependencies:isotonennls

IPWboxplot

Rendered frommy-vignette.Rmdusingknitr::knitron Nov 11 2024.

Last update: 2022-04-22
Started: 2019-01-02