Package: IPWboxplot 0.1.2
IPWboxplot: Adapted Boxplot to Missing Observations
Boxplots adapted to the happenstance of missing observations where drop-out probabilities can be given by the practitioner or modelled using auxiliary covariates. The paper of "Zhang, Z., Chen, Z., Troendle, J. F. and Zhang, J.(2012) <doi:10.1111/j.1541-0420.2011.01712.x>", proposes estimators of marginal quantiles based on the Inverse Probability Weighting method.
Authors:
IPWboxplot_0.1.2.tar.gz
IPWboxplot_0.1.2.zip(r-4.5)IPWboxplot_0.1.2.zip(r-4.4)IPWboxplot_0.1.2.zip(r-4.3)
IPWboxplot_0.1.2.tgz(r-4.4-any)IPWboxplot_0.1.2.tgz(r-4.3-any)
IPWboxplot_0.1.2.tar.gz(r-4.5-noble)IPWboxplot_0.1.2.tar.gz(r-4.4-noble)
IPWboxplot_0.1.2.tgz(r-4.4-emscripten)IPWboxplot_0.1.2.tgz(r-4.3-emscripten)
IPWboxplot.pdf |IPWboxplot.html✨
IPWboxplot/json (API)
# Install 'IPWboxplot' in R: |
install.packages('IPWboxplot', repos = c('https://anaperezgonzalez.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:cd92b532d7. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | OK | Nov 11 2024 |
R-4.5-linux | OK | Nov 11 2024 |
R-4.4-win | OK | Nov 11 2024 |
R-4.4-mac | OK | Nov 11 2024 |
R-4.3-win | OK | Nov 11 2024 |
R-4.3-mac | OK | Nov 11 2024 |
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Boxplot adapted to skewness and missing values | IPW.ASYM.boxplot |
Boxplot adapted to missing values | IPW.boxplot |
Computes the IPW quantiles | IPW.quantile |